Alex Dornburg

Eyes Wide Shut: the impact of dim-light vision on neural investment in marine teleosts

Understanding how organismal design evolves in response to environmental challenges is a central goal of evolutionary biology. In particular, assessing the extent to which environmental requirements drive general design features among distantly related groups is a major research question. The visual system is a critical sensory apparatus that evolves in response to changing light regimes. In vertebrates, the optic tectum is the primary visual processing centre of the brain and yet it is unclear how or whether this structure evolves while lineages adapt to changes in photic environment. On one hand, dim-light adaptation is associated with larger eyes and enhanced light-gathering power that could require larger information processing capacity. On the other hand, dim-light vision may evolve to maximize light sensitivity at the cost of acuity and colour sensitivity, which could require less processing power. Here, we use X-ray microtomography and phylogenetic comparative methods to examine the relationships between diel activity pattern, optic morphology, trophic guild and investment in the optic tectum across the largest radiation of vertebrates—teleost fishes. We find that despite driving the evolution of larger eyes, enhancement of the capacity for dim-light vision generally is accompanied by a decrease in investment in the optic tectum. These findings underscore the importance of considering diel activity patterns in comparative studies and demonstrate how vision plays a role in brain evolution, illuminating common design principles of the vertebrate visual system.

Date
2018
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Curacao

Comparing the dietary niche overlap and ecomorphological differences between invasive Hemidactylus mabouia geckos and a native gecko competitor

Abstract

Hemidactylus mabouia is one of the most successful, widespread invasive reptile species and has become ubiquitous across tropical urban settings in the Western Hemisphere. Its ability to thrive in close proximity to humans has been linked to the rapid disap-pearance of native geckos. However, aspects of Hemidactylus mabouia natural history and ecomorphology, often assumed to be linked with this effect on native popula-tions, remain understudied or untested. Here, we combine data from ∂15N and ∂13C stable isotopes, stomach contents, and morphometric analyses of traits associated with feeding and locomotion to test alternate hypotheses of displacement between H. mabouia and a native gecko, Phyllodactylus martini, on the island of Curaçao. We demonstrate substantial overlap of invertebrate prey resources between the species, with H. mabouia stomachs containing larger arthropod prey as well as vertebrate prey. We additionally show that H. mabouia possesses several morphological advantages, including larger sizes in feeding-associated traits and limb proportions that could offer a propulsive locomotor advantage on vertical surfaces. Together, these findings pro-vide the first support for the hypotheses that invasive H. mabouia and native P. martinioverlap in prey resources and that H. mabouia possess ecomorphological advantages over P. martini. This work provides critical context for follow-up studies of H. mabouiaand P. martini natural history and direct behavioral experiments that may ultimately il-luminate the mechanisms underlying displacement on this island and act as a potential model for other systems with Hemidactylus mabouia invasions.

KEYWORDSfood web, invasive species, trophic ecology, urbanization, vertebrate biodiversity loss
 

Date
2021
Data type
Scientific article
Theme
Education and outreach
Geographic location
Curacao