Albright, R.

Geographic variation in long-term trajectories of change in coral recruitment: a global-to-local perspective

Compiled abundances of juvenile corals revealed no change over time in the Pacific, but a decline in the Caribbean. Using these analyses as a rationale, we explored recruitment and post-settlement success in determining coral cover using studies in the Caribbean (St John, Bonaire) and Pacific (Moorea, Okinawa). Juvenile corals, coral recruits, and coral cover have been censused in these locations for years, and the ratio of juvenile (J) to recruiting (R) corals was used to measure post-settlement success. In St John and Bonaire, coral cover was stable but different between studies, with the ratio of the density of juveniles to density of recruits (J : R) ~0.10; in Moorea, declines in coral cover were followed by recovery that was related to the density of juvenile corals 3 years before, with J : R ~0.40; and in Okinawa, a decline in coral cover in 1998 was followed by a slow recovery with J/R ~0.01. Coral cover was associated positively with juvenile corals in St John, and in Okinawa, the density of juvenile corals was associated positively with recruits the year before. J : R varied among studies, and standardised densities of juvenile corals declined in the Caribbean, but increased in the Pacific. These results suggest that differences in the post-settlement success may drive variation in coral community structure.

 

Date
2015
Data type
Scientific article
Theme
Research and monitoring
Geographic location
Bonaire

Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata

Ocean acidification (OA) refers to the ongoing decline in oceanic pH resulting from the uptake of atmospheric CO2. Mounting experimental evidence suggests that OA will have negative consequences for a variety of marine organisms. Whereas the effect of OA on the calcification of adult reef corals is increasingly well documented, effects on early life history stages are largely unknown. Coral recruitment, which necessitates successful fertilization, larval settlement, and postsettlement growth and survivorship, is critical to the persistence and resilience of coral reefs. To determine whether OA threatens successful sexual recruitment of reef-building corals, we tested fertilization, settlement, and postsettlement growth of Acropora palmata at pCO2 levels that represent average ambient conditions during coral spawning (∼400 μatm) and the range of pCO2 increases that are expected to occur in this century [∼560 μatm (mid-CO2) and ∼800 μatm (high-CO2)]. Fertilization, settlement, and growth were all negatively impacted by increasing pCO2, and impairment of fertilization was exacerbated at lower sperm concentrations. The cumulative impact of OA on fertilization and settlement success is an estimated 52% and 73% reduction in the number of larval settlers on the reef under pCO2 conditions projected for the middle and the end of this century, respectively. Additional declines of 39% (mid-CO2) and 50% (high-CO2) were observed in postsettlement linear extension rates relative to controls. These results suggest that OA has the potential to impact multiple, sequential early life history stages, thereby severely compromising sexual recruitment and the ability of coral reefs to recover from disturbance

Date
2010
Data type
Scientific article
Theme
Research and monitoring