Acosta, C.A.

Impending Trade Suspensions of Caribbean Queen Conch under CITES: A Case Study on Fishery Impacts and Potential for Stock Recovery

The Convention on International Trade in Endangered Species (CITES) Authority issued injunctions in 2003 and 2004 to halt export trade of Caribbean queen conch (Strombus gigas) from several countries and initiated reviews of a number of other conch-producing countries. The current regula- tory framework for regional conch fisheries has obviously failed to protect stocks. I present a case study of the Belize conch fishery to examine fishing impacts, effectiveness of existing regulations, and potential for population recovery. Fishery-independent data from a no-take marine reserve indicated that unfished density and biomass were nearly an order of magnitude greater than in comparable fished areas. Size structure of the protected population showed that an average of 38% of the legal catch may consist of juvenile conch. The spawning potential ratio indicated that the fished stock is severely over- exploited, and furthermore, the protected population has not compensated to make the local fishery sustainable. Under these conditions, a moratorium under CITES may be warranted. Until stock assessment models are refined, action should be taken to reduce juvenile fishing mortality, extend closed seasons, and enforce a network of functional no-take reserves in essential habitat. 

Date
2006
Data type
Scientific article
Journal
Author

Spatially explicit dispersal dynamics and equilibrium population sizes in marine harvest refuges

For marine reserves to function as effective harvest refuges for exploited species, the reserve must protect a substantial proportion of the population for an indefinite period of time. Because most marine reserves are space-limited, the buildup and equilibrium population sizes of mobile species will be influenced by the size and boundary conditions of the refuge. A logistic rate model was used to predict equilibrium population sizes in a marine harvest refuge, based on species-specific dispersal dynamics and the spatial configuration of the refuge. The model parameters were derived for Caribbean spiny lobsters and queen conch in an isolated marine reserve at Glover’s Reef, Belize, and were compared to observed population change over a 5-yr period. Spiny lobsters and queen conch, the two most heavily exploited species in the Caribbean, differ in larval recruitment rates (immigration) and mobility of adults (emigration). The expected increase in the population size of spiny lobsters in this refuge was 250% and queen conch was 420% over that of the initial fished population. The observed densities of lobsters and conch in the refuge approached the predicted estimates within three years. To further explore the impact of alternative spatial configurations on refuge populations, the model was run on the same populations in two hypothetical refuges. In a refuge of the same area but 50% less absorbing boundary (adjacent to intensively fished areas), the spiny lobster population was expected to be 30% larger than the equilibrium population size in the original refuge, whereas the queen conch population was not expected to change from that in the original refuge. In a refuge that was 50% larger and with 50% less absorbing boundary, the spiny lobster population was expected to increase 110% and the queen conch population was expected to increase 50% over the equilibrium population size in the original refuge. Relatively minor changes in refuge area and boundary conditions may thus result in major population-level responses by exploited species, depending on dispersal dynamics and habitat availability. This simple model may be applicable for rapid assessment of the potential efficacy of proposed harvest refuges. 

Date
2002
Data type
Scientific article
Theme
Research and monitoring
Author